C(1)	0.3211 (5)	-0.1079 (6)	0.8114 (2)	2.4 (2)
C (2)	0.4357 (5)	-0.1862 (6)	0.7957 (2)	3.1 (2)
C(3)	0.5633 (5)	-0.1674 (7)	0.8265 (2)	3.1 (2)
$\mathrm{C}(4)$	0.5793 (5)	-0.0738 (6)	0.8716 (2)	2.8 (2)
C(5)	0.4602 (5)	-0.0022 (6)	0.8853 (2)	2.3 (2)
C(6)	0.4492 (5)	0.0996 (6)	0.9310 (2)	2.3 (2)
C(7)	0.4965 (5)	0.2507 (6)	1.0015 (2)	2.4 (2)
C(8)	0.3518 (5)	0.2476 (6)	0.9841 (2)	2.5 (2)
C(9)	0.2606 (5)	0.3363 (7)	1.0105 (2)	3.0 (2)
C(10)	0.3201 (6)	0.4249 (6)	1.0535 (2)	3.4 (2)
C(11)	0.4648 (6)	0.4264 (6)	1.0702 (2)	3.3 (2)
C(12)	0.5555 (5)	0.3383 (6)	1.0453 (2)	3.0 (2)
C(13)	0.1773 (5)	-0.1055 (6)	0.7844 (2)	2.4 (2)
C(14)	-0.0076 (5)	-0.1235 (6)	0.7283 (2)	2.5 (2)
C(15)	-0.0371 (5)	-0.0329 (6)	0.7719 (2)	2.4 (2)
$\mathrm{C}(16)$	-0.1698 (5)	0.0335 (6)	0.7731 (2)	3.0 (2)
C(17)	-0.2694 (5)	0.0076 (7)	0.7298 (2)	3.2 (2)
C(18)	-0.2399 (5)	-0.0816 (7)	0.6863 (2)	3.4 (2)
$\mathrm{C}(19)$	-0.1106 (6)	-0.1480 (7)	0.6851 (2)	3.2 (2)
C(21)	0.1714 (6)	0.4478 (7)	0.8479 (2)	4.3 (3)
C(31)	0.0043 (7)	-0.2211 (8)	0.9064 (3)	4.8 (3)

Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Ni}-\mathrm{N}(1)$	$2.028(4)$	$\mathrm{Ni}-\mathrm{O}(21)$	$2.074(3)$
$\mathrm{Ni}-\mathrm{N}(2)$	$2.061(4)$	$\mathrm{Ni}-\mathrm{N}(3)$	$2.114(4)$
$\mathrm{Ni}-\mathrm{N}(11)$	$2.063(4)$	$\mathrm{Ni}-\mathrm{O}(31)$	$2.151(3)$
$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(2)$	$78.0(1)$	$\mathrm{N}(2)-\mathrm{Ni}-\mathrm{O}(31)$	$91.0(1)$
$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(11)$	$177.3(2)$	$\mathrm{N}(11)-\mathrm{Ni}-\mathrm{O}(21)$	$91.0(2)$
$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{O}(21)$	$89.6(1)$	$\mathrm{N}(11)-\mathrm{Ni}-\mathrm{N}(3)$	$100.0(2)$
$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(3)$	$77.4(1)$	$\mathrm{N}(11)-\mathrm{Ni}-\mathrm{O}(31)$	$88.9(2)$
$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{O}(31)$	$90.4(1)$	$\mathrm{O}(21)-\mathrm{Ni}-\mathrm{N}(3)$	$89.1(2)$
$\mathrm{N}(2)-\mathrm{Ni}-\mathrm{N}(11)$	$104.6(2)$	$\mathrm{O}(21)-\mathrm{Ni}-\mathrm{O}(31)$	$178.1(1)$
$\mathrm{N}(2)-\mathrm{Ni}-\mathrm{O}(21)$	$90.9(2)$	$\mathrm{N}(3)-\mathrm{Ni}-\mathrm{O}(31)$	$89.1(1)$
$\mathrm{N}(2)-\mathrm{Ni}-\mathrm{N}(3)$	$155.3(1)$	$\mathrm{N}(12)-\mathrm{N}(11)-\mathrm{Ni}$	$131.9(4)$

The structure was solved by direct methods using MITHRIL (Gilmore, 1983) and refined by full-matrix least-squares methods. All non-H atoms were located in successive $\Delta \rho$ maps and refined with anisotropic displacement parameters. All H atoms were located geometrically and included with isotropic displacement parameters in the structure-factor calculations, but not refined.

This research was supported by grants from the National Natural Science Foundation of China and the Fuzhou State Key Laboratory of Structure Chemistry.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates, least-squares-planes data and complete geometry have been deposited with the IUCr (Reference: AB1196). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Addison, A. W. \& Burke, P. J. (1981). J. Heterocycl. Chem. 18, 803805.

Alagna, L., Hasnain, S. S., Piggott, B. \& Williams, D. J. (1984). Biochem. J. 220, 591-595.
Gilmore, C. J. (1983). MITHRIL. Computer Program for the Automatic Solution of Crystal Structures from X-ray Data. Univ. of Glasgow, Scotland.
Sundberg, R. J. \& Martin, R. B. (1974). Chem. Rev. 74, 471-517.
Wang, S., Luo, Q., Zhou, X. \& Zeng, Z. (1993). Polyhedron, 12, 1939-1945.
Wang, S., Zhu, Y., Zhang, F., Wang, Q. \& Wang, L. (1992). Polyhedron, 11, 1909-1915.
© 1995 International Union of Crystallography
Printed in Great Britain - all rights reserved

Acta Cryst. (1995). C51, 1073-1075

Ethylenediaminium Dichromate

Pablo A. Lorenzo-Luis, Pedro Martín-Zarza and Pedro Gili*
Departamento de Química Inorgánica, Facultad de Farmacia, Universidad de La Laguna, 38200 La Laguna Tenerife, Canary Islands, Spain
Juan M. Arrieta
Departmento de Química Inorgánica, Universidad del País Vasco, Apdo 644, Bilbao, Spain
Gabriel Germain

Unité de Chimie Physique Moléculaire et de la Cristallographie, Université de Louvain, Place Louis Pasteur 1, B-1348 Louvain-la-Neuve, Belgium

Leon Dupont
Laboratoire de Cristallographie, Institut de Physique B5, Université de Liege au Sart-Tilman, B-4000 Leige, Belgium
(Received 5 October 1994; accepted 20 December 1994)

Abstract

The synthesis, characterization, and crystal and molecular structures of $\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}^{2+} \cdot \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ are described. The structure of this compound was determined by X ray crystallography and showed that the $\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}{ }^{2+}$ organic cations are bound to the $\mathrm{Cr}_{2} \mathrm{O}^{2-}$ anions by $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions [2.988(3) \AA and $92.30(17)^{\circ}$].

Comment

To our knowledge, no fluoropolychromates(VI) have been reported previously. We attempted to prepare an organic fluoropolychromate(VI) from organic base, chromium(VI) trioxide and HF in aqueous medium, but obtained instead an organic dichromate(VI). We describe here the preparation, characterization, and molecular and crystal structures of ethylenediaminium dichromate, (1).

(1)

A view of the molecule is shown in Fig. 1, with the unit-cell packing in Fig. 2. The structure consists of discrete dinegative dichromate anions hydrogen bonded to
dipositive ethylenediaminium cations. The $\mathrm{Cr}-\mathrm{O}$ bond distances are close to the expected values for the dichromate anion ($1.60 \AA$) (Martín-Zarza, Gili, RodríguezRomero, Ruiz-Pérez \& Solans, 1994; Pressprich, Willet, Sheets, Paudler \& Gard, 1990), with the exception of the $\operatorname{Cr}(1)-\mathrm{O}(4)$ distance $[1.6300$ (11) \AA] which may be attributed to the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. The angles around $\operatorname{Cr}(1)$ are nearly tetrahedral [107.59(6)$\left.110.94(8)^{\circ}\right]$. The most important hydrogen bonds are $\mathrm{N}(1)-\mathrm{H}(1) \cdots \mathrm{O}(4)\left[2.988(3) \AA\right.$ and $\left.92.30(17)^{\circ}\right]$, $\mathrm{N}(1)-\mathrm{H}(1) \cdots \mathrm{O}\left(4^{\mathrm{i}}\right)$ [2.812(3) \AA and $161.83(19)^{\circ}$; symmetry code: (i) $\left.\frac{3}{2}-x, \frac{1}{2}-y, 1-z\right], \mathrm{N}(1)-\mathrm{H}(2) \cdots \mathrm{O}\left(3^{\text {ii }}\right)$

Fig. 1. Structure of the title compound showing the atom numbering. Displacement ellipsoids are plotted at the 50% probability level.

Fig. 2. Packing diagram of the unit cell.
[2.914 (3) \AA and $147.52(19)^{\circ}$; symmetry code: (ii) x, $\left.1-y, z-\frac{1}{2}\right]$ and $\mathrm{N}(1)-\mathrm{H}(2) \cdots \mathrm{O}(4)$ [2.988(3) \AA and $\left.116.81(16)^{\circ}\right]$. All these hydrogen bonds are bifurcated.

Experimental

A solution of ethylenediamine $(0.6 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{HF}(10 \mathrm{M}$, $15 \mathrm{ml})$ was added dropwise to a solution of $\mathrm{CrO}_{3}(1.0 \mathrm{~g}$, $10 \mathrm{mmol})$ in $\mathrm{HF}(10 \mathrm{M}, 15 \mathrm{ml})$. An orange solution was formed from which red-orange crystals were obtained after twelve days. Found: C 8.94, N 10.38, H 3.69\%; $\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ requires C 8.64, N 10.07 , H 3.62\%. Elemental analyses (C, H and N) were performed in a Carlo Erba 1106 automatic analyser.

The IR spectrum of the compound shows bands at $3100 \mathrm{~cm}^{-1}$ corresponding to the stretching vibrations of NH_{3}^{+} of the ethylenediaminium cation when an intermolecular hydrogen bond exists (Bellamy, 1975). The bands at 948 and $878 \mathrm{~cm}^{-1}$ are assigned to the symmetric and asymmetric Cr O stretching vibrations of the terminal bonds (ν_{1} frequency, symmetry A) (Martín-Zarza, Gili, Rodríguez-Romero, RuizPérez \& Solans, 1994). The IR spectrum was obtained with a Nicolet 710FT-IR spectrophotometer in the $4000-250 \mathrm{~cm}^{-1}$ range using KBr pellets.

The electronic spectrum of the title compound presents bands at 440, 360-370 and 274 nm . The assignments are 440 (${ }^{1} A_{1} \rightarrow{ }^{1} E^{a}$), 360-370 $\left({ }^{1} A_{1} \rightarrow{ }^{1} A_{1}\right.$ and ${ }^{1} E^{b}$ or $\left.t_{1}^{6} \rightarrow t_{1}{ }^{5} e^{1}\right)$ and $274 \mathrm{~nm}\left({ }^{1} A_{1} \rightarrow{ }^{1} E^{c}\right.$ or $t_{1}^{6} \rightarrow t_{1}^{5} t_{2}{ }^{1}$) (Ciéslak-Golonka, 1991). The electronic spectrum as diffuse reflectance was recorded on a Perkin-Elmer $550 S$ spectrophotometer dispersing all samples in BaSO_{4}.

Crystal data

$\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}^{2+} . \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
$M_{r}=278.12$
Monoclinic
C2/c
$a=13.526$ (7) \AA
$b=7.801$ (7) \AA
$c=8.706(11) \AA$
$\beta=109.14(5)^{\circ}$
$V=867.8(11) \AA^{3}$
$Z=4$
$D_{x}=2.129 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe Siemens AED-2 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: ψ scan (Stoe \& Cie, 1987a)
$T_{\text {min }}=0.4526, T_{\max }=$ 0.5652

1898 measured reflections 1898 independent reflections

Refinement

Refinement on F^{2}
$R(F)=0.0223$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=10-25^{\circ}$
$\mu=2.515 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Hexagonal prismatic
$0.8 \times 0.4 \times 0.4 \mathrm{~mm}$
Red-orange

1676 observed reflections
[$\left.F_{o}>4 \sigma\left(F_{o}\right)\right]$
$\theta_{\text {max }}=34.98^{\circ}$
$h=-21 \rightarrow 19$
$k=0 \rightarrow 12$
$l=0 \rightarrow 13$
2 standard reflections frequency: 60 min intensity decay: $<3 \%$
$\Delta \rho_{\text {max }}=0.390 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.450 \mathrm{e} \AA^{-3}$
$w R\left(F^{2}\right)=0.0733$
$S=0.837$
1676 reflections
63 parameters
$\begin{aligned} & w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.0536 P)^{2} \\ &+1.12 P] \\ & \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\ &(\Delta / \sigma)_{\max }=0.001\end{aligned}$

Extinction correction: SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.064 (2)

Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
$\mathrm{Cr}(1)$	0.6215 (1)	0.5992 (1)	0.3424 (1)	0.023 (1)
N(1)	0.6467 (1)	0.0935 (2)	0.2932 (2)	0.031 (1)
C(1)	0.5460 (1)	0.0954 (2)	0.3288 (2)	0.026 (1)
O(1)	1/2	0.4925 (2)	1/4	0.030 (1)
O(2)	0.6398 (1)	0.7336 (2)	0.2116 (2)	0.039 (1)
O(3)	0.6179 (1)	0.7009 (2)	0.5023 (2)	0.043 (1)
$\mathrm{O}(4)$	0.7132 (1)	0.4539 (2)	0.3900 (1)	0.034 (1)

Table 2. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Cr}(1)-\mathrm{O}(3)$	$1.617(2)$	$\mathrm{N}(1)-\mathrm{C}(1)$	$1.494(2)$
$\mathrm{Cr}(1)-\mathrm{O}(2)$	$1.625(2)$	$\mathrm{C}(1)-\mathrm{C}\left(1^{1}\right)$	$1.520(3)$
$\mathrm{Cr}(1)-\mathrm{O}(4)$	$1.6300(11)$	$\mathrm{O}(1)-\mathrm{Cr}\left(1^{\mathrm{i}}\right)$	$1.7818(10)$
$\mathrm{Cr}(1)-\mathrm{O}(1)$	$1.7818(10)$		
$\mathrm{O}(3)-\mathrm{Cr}(1)-\mathrm{O}(2)$	$109.96(9)$	$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{O}(1)$	$108.37(7)$
$\mathrm{O}(3)-\mathrm{Cr}(1)-\mathrm{O}(4)$	$110.94(8)$	$\mathrm{O}(4)-\mathrm{Cr}(1)-\mathrm{O}(1)$	$107.59(6)$
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{O}(4)$	$110.42(7)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}\left(1^{\mathrm{i}}\right)$	$110.15(14)$
$\mathrm{O}(3)-\mathrm{Cr}(1)-\mathrm{O}(1)$	$109.49(6)$	$\mathrm{Cr}(1)-\mathrm{O}(1)-\mathrm{Cr}\left(1^{\mathrm{i}}\right)$	$124.27(8)$
Symmetry code: (i) $1-x, y, \frac{1}{2}-z$			

Data collection and lattice-constant refinement used DIF4 (Stoe \& Cie, 1987a). Lorentz and polarization corrections were applied (REDU4; Stoe \& Cie, 1987b). The structure was solved by the Patterson method using SHELXS86 (Sheldrick, 1990). All non-H atoms were refined anisotropically with SHELXL93 (Sheldrick, 1993). H atoms were refined with restraints: distances $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}=1.08 \AA$; isotropic displacement factors $=0.043$ and $0.033 \AA^{2}$ for H atoms bonded to N and C , respectively. Molecular graphics were produced using ORTEPII (Johnson, 1976).

One of us (JMA) acknowledges the UPV-EHU (project 169.310-EB05/93).

Lists of structure factors, anisotropic displacement parameters and H -atom coordinates have been deposited with the IUCr (Reference: SH1107). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2 HU , England.

References

Bellamy, L. J. (1975). The Infrared Spectra of Complex Molecules, Vol. 1, 3rd ed., pp. 289-290. London: Chapman \& Hall.
Ciéslak-Golonka, M. (1991). Coord. Chem. Rev. 109, 223-249.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Martín-Zarza, P., Gili, P., Rodríguez-Romero, F. V., Ruiz-Pérez, C. \& Solans, X. (1994). Polyhedron. In the press.
Pressprich, M. R., Willet, R. D., Sheets, R. M., Paudler, W. W. \& Gard, G. L. (1990). Acta Cryst. C46, 1635-1637.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
Stoe \& Cie (1987a). DIF4. Data Collection Program. Version 6.2. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (1987b). REDU4. Data Reduction Program. Version 6.2. Stoe \& Cie, Darmstadt, Germany.

Acta Cryst. (1995). C51, 1075-1078

A Chelate-Stabilized Molybdenum-Imido-Alkylidene Complex, [TpMo\{CHC(Me) $\left.\left.\mathbf{2}_{2} \mathbf{P h}\right\}(\mathrm{NAr})(\mathrm{OTf})\right]$

William M. Vaughan, James M. Bonella and Khall A. Abboud*
Department of Chemistry, University of Florida, Gainseville, FL 32611, USA

(Received 31 May 1994; accepted 31 October 1994)

Abstract

The title compound, (2,6-diisopropylphenylimido)[hy-drotris(1-pyrazolyl- N^{3})borato](2-methyl-2-phenylpropylidene)(trifluoromethanesulfonato) molybdenum(VI), [$\mathrm{Mo}\left(\mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}\right)\left(\mathrm{C}_{10} \mathrm{H}_{12}\right)\left(\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}\right)\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BN}_{6}\right)$], has been synthesized and its crystal structure determined. The geometry around the Mo atom, imposed by the tridentate tris(pyrazolyl)borate ligand, is that of a distorted octahedron. There appears to be significant interaction between the ligands and the transition metal center. Principal distances include MoN (imido) 1.753 (8), Mo-C(propylidene) 1.949 (10), Mo-O(trifluoromethanesulfonate) 2.121 (7) and Mo-

 N(pyrazolyl) 2.167 (8)-2.311 (9) Á.
Comment

The chemistry of high-oxidation-state metal-alkylidene complexes is of particular interest because of their role in olefin metathesis reactions and polymerizations (Nugent \& Mayer, 1988; Schrock, 1986). Our efforts have focused on employing ancillary chelating ligands to form metal-alkylidene complexes of increased thermal stability (Blosch, Gamble, Abboud \& Boncella, 1992; Gamble \& Boncella, 1993). As part of our investigation of the use of hydrotris(pyrazolyl)borate (Tp) ligands (Trofimenko, 1971) in the stablization of metal-alkylidene complexes, we have determined the structure of the title compound

